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Order-by-disorder in the XY pyrochlore antiferromagnet
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We investigate the properties of the XY pyrochlore antiferromagnet with infinite local 〈111〉 planar anisotropy.
We identify the ground states and show that the configurational ground state entropy is subextensive. By computing
the free energy due to harmonic fluctuations and by carrying out Monte Carlo simulations, we find that the model
exhibits thermal order-by-disorder leading to low-temperature long-range order consisting of discrete magnetic
domains. In doing so, we set aside doubts that order-by-disorder survives in the thermodynamic limit in this
model. We compute the spin wave spectrum and show that thermal and quantum fluctuations select the same
magnetic structure. With a previously unreported finite-size scaling analysis of Monte Carlo data, we confirm
that the transition is first order for the XY model. Using Monte Carlo simulations, we find that the state selected
by thermal fluctuations in this XY pyrochlore antiferromagnet can survive the addition of sufficiently weak
nearest-neighbor pseudo-dipolar interactions or long-range dipolar interactions to the spin Hamiltonian. Quite
interestingly, the resulting state selected by thermal order-by-disorder is metastable below some temperature. We
discuss our results in relation to the Er2Ti2O7 and Er2Sn2O7 pyrochlore antiferromagnets.
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I. INTRODUCTION

The geometric frustration of magnetic interactions on
lattices of magnetic moments often leads to a configurational
classical ground state entropy that scales with the volume of the
system, V , as V α with 0 < α � 1. This can have some unusual
consequences. A well-known example is the Ising model on
the triangular lattice with nearest-neighbor antiferromagnetic
interactions which has an extensive ground state entropy
(α = 1) and exhibits no finite-temperature transition [1]. While
in real materials a V α entropy left by the leading interactions
is often energetically lifted by weaker interactions, leading to
long-range magnetic order, there are some exceptions. For
example, in the Dy2Ti2O7 and Ho2Ti2O7 spin ice materi-
als [2], in which the magnetic moments are described by
Ising spins, the extensive (α = 1) low-temperature entropy
caused by frustration of the leading effective ferromagnetic
nearest-neighbor interactions is indeed lifted by the perturbing
long-ranged part of the dipolar interaction [3–5]. However,
the degeneracy lifting in this system is so weak that the
theoretically expected phase transition to magnetic long-range
order, in most experiments, is inhibited by a freezing into a
spin ice state without long-range order [6,7]. See, however,
Ref. [8].

Another possibility for a system with an exponentially
(exp[CV α]) large number of classical degenerate ground states
is that thermal or quantum fluctuations might select a subset
of states about which the density of zero modes is greatest.
These entropic and quantum state selection mechanisms are
both referred to as order-by-disorder (OBD) [9–12]. Among
pyrochlore antiferromagnets, in which the spins sit on a lattice
of corner-sharing tetrahedra, Moessner and Chalker have given
a criterion for the occurrence of long-range order induced
by thermal fluctuations [13]. This criterion is based on the

degree of divergence of the statistical weight of particular
spin configurations—a power-counting argument depending
on the number of zero-energy excitations (zero modes) for a
given spin configuration and the number of dimensions of the
ground state manifold. For example, this criterion indicates
that the XY antiferromagnet with globally coplanar spins
(spins perpendicular to the global [001] axis) should exhibit
entropic selection—a result which is borne out by Monte
Carlo simulations [13]. For such XY systems, this comes
about because the number of zero modes about collinear spin
configurations is proportional to the number of spins whereas
the configurational entropy in the ground state is subextensive,
growing as V 2/3 [13,14].

This article is concerned with the pyrochlore XY anti-
ferromagnetic model with local 〈111〉 spins, meaning that
there is a different easy plane for each of the four tetrahedral
sublattices [14–17]. Because such a model preserves the cubic
symmetry of the pyrochlore lattice and because the single-ion
crystal field can, and does in various materials [18], generate
such an anisotropy, it is more physical than the aforementioned
pyrochlore XY model with a global easy plane [13]. The model
was recognized some time ago to exhibit a continuous degen-
eracy in its classical ground state [16,17]. Monte Carlo simula-
tions of the local 〈111〉XY antiferromagnet [14,16,17] indicate
that it exhibits two phases—a high-temperature paramagnetic
phase and a low-temperature long-range-ordered phase. We
refer to the magnetic structure in the ordered phase as ψ2

(which is one component of the �5 branch of degeneracies
in the classical XY antiferromagnet) to be consistent with
Ref. [19] and the group theory literature. A calculation of
the spectrum of the Hessian about different discrete ground
states [16] suggests that the observed long-range-ordered
spin configuration in Monte Carlo simulations has the largest
density of zero modes of all the degenerate ground states and,
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consequently, that the transition observed in the simulations is
an example of classical (thermal) OBD [16,17]. However, the
authors of Ref. [16] did question whether the selection of the
long-range-ordered ψ2 state survives in the thermodynamic
limit.

In this article, we expand on the work of Refs. [16,17] and
give a more systematic account of the properties of the local
〈111〉 XY pyrochlore. We present in Sec. II the model and its
ground states. In Sec. III, we discuss some of the details of the
Monte Carlo simulations performed in this work. Section IV
reports results of an analytical and numerical investigation of
the thermal order-by-disorder mechanism, providing definitive
evidence that the fluctuation selection mechanism of the ψ2

state does survive in the thermodynamic limit and giving
further insight into the mechanism leading to order-by-disorder
than was previously given [16,17]. We also include in Sec. IV a
subsection showing that there is a quantum order-by-disorder
mechanism in the XY model as speculated but not shown
in Ref. [15]. More recent work [20] building on the preprint
version of the present work [21] has confirmed this result.

In Sec. V we put the model considered in this paper in the
context of the phenomenology of the rare-earth pyrochlores
and, in particular, the material Er2Ti2O7. Specifically, we
discuss how the XY model controls the physics over a
significant part of the space of couplings of pyrochlore
magnets. We also consider the problem of the stability of the
long-range order selected by thermal order-by-disorder when
there is a weak competition with an energetically selected
magnetic order. In particular, we discuss the effect of weak
dipolar interactions on the XY antiferromagnet of either
nearest-neighbor of exchange origin or true long-range 1/r3

nature and of magnetostatic origin. We conclude the paper
with a brief discussion in Sec. VI.

II. MODEL

In this work, we mostly focus on the problem of the
zero and finite-temperature behavior of interacting classical
spins of fixed length on the sites of a pyrochlore lattice of
corner-sharing tetrahedra with an infinite single-ion anisotropy
such that the spins lie within their respective local XY planes
perpendicular to the local 〈111〉 directions. In Sec. IV B,
we discuss the problem of order-by-disorder due to quantum
fluctuations in a model with spin operators S [14–16].

The interactions are taken to be antiferromagnetic isotropic
exchange between nearest neighbors with coupling J (J > 0).
Later on we also consider, as a perturbation, both pseudo-
dipolar interactions solely between nearest neighbors with
coupling strength D and long-range dipolar interactions with
the same coupling. First we introduce a Hamiltonian in terms
of angular momentum J:

H = J
∑
〈i,j〉

Ji · Jj

+DR3
nn

∑
pairs

(
Ji · Jj

|Rij |3 − 3(Ji · Rij )(Jj · Rij )

|Rij |5
)

, (1)

where R3
nn is the nearest-neighbor distance. For the case

of pseudo-dipolar interactions, the dipolar interaction in the
above formula is truncated beyond nearest neighbors. We

FIG. 1. The local XY easy planes and the local coordinates for
each of the tetrahahedral sublattices shown on the vertices of a single
tetrahedron. The local spin angles, φa (for sublattices a = 1, 2, 3, 4),
are measured from the x axes. The local z axes (not shown) point in
the local 〈111〉 directions towards the center of the tetrahedron.

consider both the nearest-neighbor part of the dipole and the
long-range magnetostatic dipole for the sake of completeness.
The dipolar interaction may arise between nearest neighbors as
one component of the four symmetry-allowed exchange cou-
plings on the pyrochlore lattice [22–24] while the long-range
dipolar interaction is simply a magnetostatic coupling between
the elementary dipole moments. However, the classical ground
states of both the full long-range dipolar interaction model and
those of the nearest-neighbor dipolar interaction model are the
same [25]. We would expect that the long-range part of the
dipolar interaction should not change the qualitative physics
introduced by the nearest-neighbor dipolar coupling because
the tetrahedra for the ordered magnetic structures considered
here have zero moment. Our simulation results in Sec. V
confirm this naive expectation.

In the following we adopt a set of coordinate axes particular
to each of the four pyrochlore sublattices. The convention
that we choose is illustrated in Fig. 1. In order to impose the
single-ion anisotropy on the moments, we rotate each angular
momentum J into the local 〈111〉 coordinate system on every
site and we make the transformation

(Jx,Jy,Jz) → (g⊥Sx,g⊥Sy,g‖Sz), (2)

where the g factor components, (g⊥, g⊥, g‖), may vary
continuously between Ising-like moments with g⊥ = 0 to
local XY moments with g‖ = 0. One way of viewing this
transformation is as a projection of the bare superexchange
couplings between moments J in Eq. (1) onto the crystal field
doublet ground states on each magnetic site rendered in terms
of pseudospins S = 1/2 [24,26].

Consider first the exchange-only model with D = 0. In this
case, the Hamiltonian in Eq. (1) can be put into the form Hex =
(J/2)

∑
t(S2

t − 4S2), where the sum runs over all connected
tetrahedra [13] and St is the total spin on each tetrahedron.
It follows that the ground states are all those states with zero
net “spin” (St = 0) on each tetrahedron. Therefore, we write
down the conditions for the three components of the total spin
on a tetrahedron to be zero. In doing so, we impose the XY
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constraint so that the orientation of spin a (for sublattices
a = 1,2,3,4), is given by a single angle φa measured with
respect to axes within the local plane (normal to the relevant
local [111] direction) shown in Fig. 1 and given in Ref. [23].
The condition of zero net spin on each tetrahedron can then be
written as

cos(φ1) + cos(φ2) = cos(φ3) + cos(φ4),

cos(φ′
1) + cos(φ′

4) = cos(φ′
2) + cos(φ′

3),

cos(φ′′
1 ) + cos(φ′′

3 ) = cos(φ′′
2 ) + cos(φ′′

4 ),

where φ′
a ≡ φa + 2π

3 and φ′′
a ≡ φa + 4π

3 . There are four solu-
tion branches to these equations [16]. Each branch corresponds
to a continuous degeneracy wherein all four spins are rotated
smoothly within their respective local [111] XY plane.

We place an overbar on φa (φ̄a) to signify the angle for
sublattice a giving an energy minimum (zero spin St on each
tetrahedron). Then, we label the above branch solutions in the
following way:

branch 1: φ̄ ≡ φ̄1 = φ̄2 = φ̄3 = φ̄4,

branch 2: φ̄ ≡ φ̄1 = φ̄2 = −φ̄3 = −φ̄4,
(3)

branch 3: φ̄ ≡ φ̄1 = φ̄3 ,
4π

3
− φ̄ = φ̄2 = φ̄4,

branch 4: φ̄ ≡ φ̄1 = φ̄4 ,
2π

3
− φ̄ = φ̄2 = φ̄3.

A further discussion on how these solutions are rigorously
found is given in Appendix A. We illustrate the spin configu-
rations for two of the branches in Figs. 2 and 3.

To enumerate all the ground states on the pyrochlore
lattice we first tile all the tetrahedra with a particular spin
configuration from, say, branch 1. Then, we choose a line of

FIG. 2. (Color online) Collective spin rotation along a part of
branch 1 of the continuous ground state, starting from φ̄ = 0 and
progressing to φ̄ = π/3 [see Eq. (3)]. The red, arched arrows show
the directions of rotation, starting from φ̄a = 0 (for sublattices a = 1,
2, 3, 4), one of the ψ2 states, and ending in another ψ2 state, given
by φ̄a = π/3. The initial spin directions, φ̄a = 0, are indicated with
black arrows, and the final directions, φ̄a = π/3, are shown with red
arrows.

FIG. 3. (Color online) Collective spin rotation along a part
branch 2 of the continuous ground state, starting from φ̄ = 0 and
progressing to φ̄ = π/2 [see Eq. (3)]. The initial φ̄a = 0 ψ2 state is
shown with black arrows. The final configuration, indicated by red
arrows, is the ψ4 state given by φ̄1 = φ̄2 = π/2 and φ̄3 = φ̄4 = 3π/2
[see Eq. (4)].

nearest-neighbor spins traversing the length L of the system.
The sublattice labels of the spins on the so-defined chain
alternate between two values a and b. There are six such pairs
of labels. One can then transform the spins along the chain so
that the spin configurations of the associated tetrahedra belong
to another branch of solutions. For example, consider a single
chain made of sublattices 3 and 4. All the local angles along this
chain are identical initially and equal to, say, θ . We can trans-
form these to −θ with no energy cost. Therefore, the entropy
within the ground state manifold scales as L2 as first noted in
Ref. [14]. This is in contrast to both the Heisenberg pyrochlore
antiferromagnet and the global easy axis (Ising) pyrochlore
antiferromagnet both of which have an extensive entropy.

We note that the four branches in Eq. (3) intersect in
pairs. These intersection points are at special sublattice angles
φ̄ = nπ/3 with integer n. We refer to these as ψ2 states in the
rest of this article [19]. By exploiting these intersection angles
to move between the branches, one can smoothly visit all the
ground states on a single tetrahedron and, indeed, on the whole
pyrochlore lattice. If we return to the above chain of sublattices
3 and 4, the φ̄ = 0 configuration allows the tetrahedra along
this chain to pass smoothly from branch 1 to branch 2.
As shown in Refs. [15,16] and in Sec. IV below, thermal
fluctuations have the effect of selecting a magnetic structure
with q = 0 ordering wave vector and spin orientations at these
discrete φ̄ angles. There are six distinct ψ2 ground states which
are the six q = 0 ordered states with tetrahedra tiled with local
angles φ̄a = nπ/3 for sublattices a = 1,2,3,4 and with integer
n. One can take the observation that the lattice zero modes are
along sublattice chains to understand an aspect of the Monte
Carlo results of Ref. [16]—in particular, the finite-size scaling
of the average energy of the ψ2 states at low temperature,
which was not adequately determined in Ref. [16]. Since this
point is somewhat removed from the main story of our paper,
we present the argument in Appendix C.
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For any D 	= 0, a discrete set of ground states with
q = 0 ordering wave vector is selected from the manifold of
states described above. These energetically selected states are
referred to as the ψ4 states [19,27] or Palmer-Chalker states
in the literature after Ref. [25]. The angles specifying the ψ4

states are

state 1: φ̄1 = φ̄2 = π

2
, φ̄3 = φ̄4 = 3π

2
,

state 2: φ̄1 = φ̄3 = 7π

6
, φ̄2 = φ̄4 = π

6
, (4)

state 3: φ̄1 = φ̄4 = 11π

6
, φ̄2 = φ̄3 = 5π

6
,

and the time-reversed configurations. In anticipation of what
follows in Sec. V, we note that the ψ4 states are the
ground states one finds for antiferromagnetic nearest-neighbor
exchange with sufficiently weak nearest-neighbor pseudo-
dipolar as well as for true 1/r3 long-range magnetostatic
dipolar interactions in the classical Heisenberg pyrochlore
antiferromagnet model [25,28,29]. Interestingly, the ψ4 states
are found experimentally to be the ground state of the
Gd2Sn2O7 pyrochlore antiferromagnet [29–31], but not of the
closely related Gd2Ti2O7 material [32,33].

III. MONTE CARLO METHOD

In Secs. IV C and V below, we report results from
Monte Carlo simulations of the local 〈111〉 XY pyrochlore
antiferromagnet. In this section, we give details of the Monte
Carlo algorithm and the observables that were measured in the
Monte Carlo simulations.

The Monte Carlo simulations were performed using parallel
tempering [34] in which NT replicas of a system of N spins,
each at a different temperature and with a different series
of pseudorandom numbers, are simulated simultaneously. In
addition to local spin moves, parallel tempering swaps that
exchange configurations between a pair of temperatures are
attempted. The configuration swap attempts are accepted
or rejected based on a Metropolis condition that preserves
detailed balance. Parallel tempering has been shown, in
systems known to equilibrate slowly using other methods, to
improve performance substantially [34]. Replica swaps are
attempted with a frequency of one attempt every 100 local
Monte Carlo sweeps. A local Monte Carlo sweep consists
of N spin move attempts. In our simulations, NT = 64 with
either a constant increment between the temperatures, or with
the temperatures self-consistently adjusted to obtain a uniform
parallel tempering acceptance rate.

With each spin carrying a single angular coordinate φi , the
local spin moves involve choosing an angle increment δφi from
a uniform distribution between −δφmax and δφmax. The angle
of spin Si was updated to φi + δφi and each tentative spin
rotation was accepted or rejected based on a Metropolis test.
The maximum increment δφmax was updated every 100 Monte
Carlo moves in order to maintain the spin move acceptance
rate at 50%.

Physical observables were computed every 100 Monte
Carlo sweeps. To determine the development of long-range
order with ordering wave vector q = 0 (expected for suffi-
ciently small D/J in the model discussed above [25,28,29]),

the sublattice magnetization was computed [14]:

M4 =
〈√√√√1

4

4∑
a=1

(
1

NP

NP∑
i=1

Si,a

)2〉
th

, (5)

where each spin carries an fcc lattice label i and a sublattice
label a (see Ref. [35]) and the number of sites in the lattice
is N ≡ 4NP , where NP is the number of fcc (primitive
lattice) sites. The angled brackets 〈. . .〉th denote a thermal
average. In order to distinguish the ψ2 (Refs. [15,19]) and
ψ4 (Refs. [19,25]) phases, we introduce unit vectors ê(γ (d))

a

which are oriented in the expected spin directions on each
sublattice a for magnetic structure identified by the label γ

with the domains labeled d, for both the γ = ψ2 and γ = ψ4

structures. From the combination


(γ (d)) = 1

NP

NP∑
i=1

4∑
a=1

Si,a · ê(γ (d))
a , (6)

we compute the order parameter

qγ =
〈∑

d

(
(γ (d)))2

〉
th

, (7)

for the γ = ψ2 (Refs. [15,19]) and γ = ψ4 (Refs. [19,25,27])
magnetic structures. In Eq. (7), the sum is taken over a choice
of three out of the six magnetic domains, for each of these
two structures, which are not related to one another by time
reversal. The spin directions corresponding to the domains for
ψ4 and ψ2 are given in Sec. II: ψ4 in Eq. (4) and for ψ2 all
angles φ̄a = nπ/3. The order parameter for the ψ4 state qψ4

is the same one computed in the simulations of Ref. [36].
The magnetic specific heat per spin was computed from the
fluctuations in the total energy of the system.

The sensitivity of the results to the initial spin configurations
was assessed by comparing the results of simulations starting
from (i) random configurations with a different configuration
for each thermal replica, (ii) ψ2 ordered states, and (iii)
ψ4 ordered states. We confirmed, in the case of the model
without perturbing dipolar interactions [D = 0 in Eq. (1)], that
equilibration was reached for each simulation, by checking
that the results were independent of initial conditions. Also,
the evolution of the order parameters was monitored during
the course of each simulation to ensure that they reached a
stationary state before the statistics were collected. Equilibra-
tion issues are discussed further in Sec. IV C and, for the case
of the perturbed XY model, in Sec. V.

IV. ORDER-BY-DISORDER

In this section, we consider the exchange-only model
(D = 0) given in Eq. (1). General arguments given in Ref. [13]
indicate that the XY antiferromagnet with globally coplanar
spins should exhibit a thermally driven order-by-disorder
transition. This argument does not straightforwardly carry
over to the noncoplanar 〈111〉XY antiferromagnet. Simulation
evidence for thermal order-by-disorder in the local 〈111〉 XY

model transition was presented in Refs. [14–17]. The classical
degeneracies of this model were identified in Ref. [16] and
order-by-disorder was found via Monte Carlo simulations.
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However, the possibility had been mentioned in Ref. [16] that
the temperature at which long-range order with a nonzero ψ2

order parameter develops might vanish in the thermodynamic
limit. We present simulation results which provide compelling
evidence that, for the exchange-only (D = 0) model, a first-
order phase transition to a long-range-ordered ψ2 state persists
in the thermodynamic limit. We begin, however, with a
previously unreported calculation of the free energy that
considers harmonic fluctuations which clearly demonstrates
a thermal ψ2 order-by-disorder in the thermodynamic limit
without having to rely on Monte Carlo simulations. Then,
having investigated the order-by-disorder mechanism in the
exchange-only (D = 0) model, we discuss in Sec. V the
effect of competing nearest-neighbor pseudo-dipolar (D 	= 0)
interactions and also the full long-range magnetostatic dipolar
interactions.

A. Computation of the free energy

In this section, we show that certain discrete spin config-
urations from the manifold of q = 0 ground states minimize
the free energy computed from harmonic fluctuations about
the classical ground states. We assume that every tetrahedron
on the lattice is tiled with the same spin configuration (i.e.,
that the ordering wave vector is q = 0). If we constrain
the ordering to be q = 0, the spin configuration is fixed by
specifying four angles φa , one for each sublattice. Let the
angles in a ground state configuration be denoted φ̄a for
which the ground state energy is H (φ̄a) = NEg , where N

is the number of spins. We then consider small fluctuations
δφi about these angles φi = φ̄i + δφi . The terms linear in δφi

vanish, so the Hamiltonian H = NEg + H2 + · · · , where H2

is the part harmonic in the angular deformations. H2 is writ-
ten in k space as H2 = ∑

k,a,b δφa(k)Aab(k)δφb(−k). Here,
δφa(k) = (1/

√
NP )

∑
Rμ

exp[ik · (Rμ + ra)]δφa(Rμ), where
Rμ are the fcc lattice points and ra are the vectors for the
tetrahedral basis (see Ref. [35] for notation convention). This
choice of convention for the lattice labeling ensures that the
Hessian Aab(k) is real. The eigenvalues λA(k) of Aab(k)
are nonnegative, reflecting the stability of the ground states.
The spectrum of Aab is computed in k space as a function of
the ground state for each branch.

One finds that for the special minimum energy configura-
tions φ̄a = nπ/3 for a = 1,2,3,4, the four eigenvalues, λA(k),
(A = 1,2,3,4) of the Aab(k) Hessian take the form

φ̄a = 0,π, λA = 1 ± cos(k · r12), 1 ± cos(k · r34),

φ̄a = π/3,4π/3, λA = 1 ± cos(k · r13), 1 ± cos(k · r24),

φ̄a = 2π/3,5π/3, λA = 1 ± cos(k · r23), 1 ± cos(k · r14),

where each row gives the four eigenvalues for the indicated
particular set of φ̄a (a = 1,2,3,4) angles and which correspond
to the aforementioned ψ2 states. The vector rab joins nearest
neighbors with sublattice labels a and b. The ψ2 states are
distinguished from the other ground states in having a much
higher density of zero modes—2 planes of zero modes in the
first Brillouin zone [16,17]. The planes come about because,
at these angles, one can smoothly introduce defects into the
system along (which are usually referred to as α and β) chains
in the crystal [18], as described in Sec. II. At angles away

from the ψ2 states, one can still introduce chain defects but not
continuously.

We now compute the free energy for each q = 0 configu-
ration after dropping all terms in the Hamiltonian beyond the
harmonic terms. The free energy F [φ̄] at inverse temperature,
β, is given at the harmonic level by

F [φ̄] ≈ NEg − 1

β
ln

[(∏
a,k

∫
d[δφa(k)]

)
exp(−βH2)

]

(8)

and hence

F [φ̄] ≈ NEg − N

2β
ln

(
π

β

)
+ 1

2β

∑
k

ln[A(k)]. (9)

In the limit as N → ∞, the third (last) term on the right-hand
side of Eq. (9) is N

4
1
4

1
(2π)3 I2 with I2 = ∑

A

∫
d3k ln[λA(k)]

for the four ground state branches given in Sec. II (see
Appendix B for a discussion of the various prefactors of I2).
We evaluate the integral numerically using a Monte Carlo
method with 108 points, noting that the singularities for the ψ2

spin configurations are integrable because the integrals take the
form

∫ k0

0 dk ln k for some cutoff k0 [37]. The results are shown
in Fig. 4. Evidently, I2, and consequently the free energy F [φ̄],
is minimized for the ψ2 states at φ̄a = nπ/3 where pairs of
branches meet.

It is often the case that one can simulate the effect of order-
by-disorder into a collinear state by introducing a term into the
Hamiltonian of the form

HOBD = −|�|
∑
i,j

(Si · Sj )2 (10)

that selects the most collinear spin configurations among the
classical ground states (see, for example, Refs. [10,11]). The
usual argument for the selection of such states is that collinear
spin configurations have, among all states, fluctuations that

−3

−2.5

−2

−1.5

−1

−0.5

φ0 π/3 4π/3 5π/3 2π2π/3 π

1

3 42

I2

FIG. 4. (Color online) Plot showing the harmonic free energy
contribution I2 for each of the four branches (A = 1,2,3,4) of ground
states with the φ̄a angle for each sublattice a = 2,3,4 expressed in
terms of φ̄1 via the parametrization given in Eq. (3). Each of the
four curves is labeled by its ground state branch number taken from
Eq. (3). Note, therefore, that the horizontal axis does not identify a
unique spin configuration but rather a unique configuration for each
of the four branches. The minima in the free energy appear where
pairs of ground state branches meet—at the ψ2 spin configurations.
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couple most strongly because fluctuations are responsible for
effective fields perpendicular to the spin direction even in
the broken-symmetry phase. The local XY and zero moment
constraints of the XY pyrochlore antiferromagnet ensure that
the spins cannot be collinear, but it is interesting to ask whether
the ψ2 configurations are the most collinear states within the
set of ground states. One finds that Eq. (10) is constant within
the whole ground state manifold of Eq. (3). However, the sum
−∑

i,j |Si · Sj | is minimized by the ψ2 states which lends
some credence to the intuition that the most collinear states
among all the classically degenerate zero-temperature ground
states must be selected.

B. Quantum selection

Having shown semianalytically that thermal fluctuations
select the ψ2 states, we now turn to the effect of quantum
fluctuations which, in general, need not select the same states.
In this section, we present the spin wave spectrum computed
using the Holstein-Primakoff transformation treated in a large
S expansion and truncated at harmonic order. The calculation
is performed for the Hamiltonian in Eq. (1) with D = 0. In the
coordinate system with z axes taken along the 〈111〉 directions,
the Hamiltonian is written H = ∑

J αβ

ij Sα
i S

β

j , where α and
β denote the spin components. The local Ising components
of the matrix of interactions J αβ

ij are set equal to zero—this
imposes a soft XY constraint because the computation of
the spin wave spectrum implicitly allows fluctuations out of
the easy planes. This is somewhat relevant to the Er2Ti2O7

pyrochlore antiferromagnet whose single-ion crystal field
doublet, characterized by an anisotropic g tensor with two
eigenvalues such that g⊥ > g‖, allows for a description in terms
of an effective spin-1/2 model [38]. Working in reciprocal
space with N spins and NP primitive lattice sites, one rewrites
the spin Hamiltonian in terms of boson operators, with [28,29]

S̃z
a(k) =

√
NP Sδk,0e

−ik·ra − 1√
NP

a†
a(k′)aa(k′ − k), (11)

S̃x
a (k) =

√
S

2
[a†

a(k) + aa(−k)], (12)

S̃y
a (k) = i

√
S

2
[a†

a(k) − aa(−k)], (13)

on each site with the new z axis now taken to be the
quantization axis. The quantization axis, z, is taken within
the ground state manifold of the model with antiferromagnetic
exchange as parametrized by local angles φ̄a for a = 1,2,3,4
given in Eq. (3). There are four flavors of bosons corresponding
to the distinct sublattices labeled with subscript a. One
performs a Bogoliubov transformation taking boson operators
a
†
a(k) and aa(k) into spin wave creation and annihilation

operators c
†
A(k) and cA(k) so that the Hamiltonian to harmonic

order is brought to the form

H [φ̄] = −NJS(S + 1) + JS
∑
k,A

εA(k)

+ JS
∑
k,A

εA(k)c†A(k)cA(k), (14)

FIG. 5. (Color online) Zero point energy for the pyrochlore XY

model from the linear spin wave spectrum computed from the
classical ground states. The horizontal axis is the φ parameter given
in Eq. (3) and each curve carries a label identifying the branch of
ground states to which it belongs. The quantum correction to the
classical ground state energy is minimized for the ψ2 states.

where εA(k) are the spin wave energies. Further details of
Holstein-Primakoff linear spin waves on a pyrochlore lattice
of spins can be found in Ref. [28]. As one would expect for
an antiferromagnet, the dispersion for the model Eq. (1) about
the zero modes is linear in |k|. Just as in the classical case, the
zero modes appear in pairs of planes in the first Brillouin zone
for the ψ2 states. The harmonic correction to the ground state
energy is

N�E0[φ̄] ≡
(

NJS

4
× 1

4

)∑
A

∫
BZ

d3k
(2π )3

εA(k), (15)

which we have evaluated numerically. The results are shown in
Fig. 5. To harmonic order, one observes that, among the q = 0
ground states, the zero-point energy is minimized at the ψ2

spin configurations (φ̄a = nπ/3 for all a), so a quantum order-
by-disorder mechanism selects the same states as thermal
fluctuations, as was originally speculated in Ref. [15].

C. Monte Carlo results

To further confirm the thermal order-by-disorder mecha-
nism argued for in Sec. IV A along with the concern, expressed
in Ref. [16], that the ψ2 long-range order might not survive
in the thermodynamic limit, we performed Monte Carlo
simulations of the nearest-neighbor exchange only model.
Parallel tempering Monte Carlo simulations were carried out
with J = 1 (and D = 0) for four different system sizes,
L = 2,3,4, and 5, of L3 cubic unit cells of 16 spins. To
equilibrate the system, 5 × 106 Monte Carlo sweeps were
performed, followed by the same number of steps to collect
data. All four system sizes were found to have equilibrated
satisfactorily according to the criteria discussed in Sec. III. We
note that we were unable to obtain well-equilibrated results
for L = 6 even using parallel tempering. Equilibration close
to the first-order transition for larger system sizes to the
extent necessary to obtain satisfactory finite-size scaling would
most likely require a new technique to explore the statistics
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FIG. 6. (Color online) Order parameter qψ2 and heat capacity CV

as a function of temperature for J = 1 and D = 0. Left and right
panels display results for qψ2 (L = 2,3,4,5) and for CV (L = 3,4,5),
respectively.

of configurations with interfaces such as the multicanonical
method [39,40], as employed in a model of dipolar spin ice [4],
for example.

Figures 6, 7, and 8 show data from the Monte Carlo
simulations for D/J = 0. The left-hand panel of Fig. 6 shows
the onset of the ψ2 order parameter while the right panel
shows the temperature dependence of the specific heat, CV,
near T/J = 0.127, the estimated transition temperature, for
various system sizes. We have found that this estimated
transition temperature Tc/J ≈ 0.127 is consistent both with
the one estimated from our sublattice magnetization results
(not shown) and those of Ref. [16].

Both the rate of increase of the heat capacity peak and the
jump in qψ2 with increasing L are consistent with a first-order
phase transition in the thermodynamic limit. The left-hand
panel of Fig. 7 is a histogram of the measured energies close
to the transition temperature for L = 4. Its double-peaked
structure is a clear indication of coexistence and hence of
the first-order nature of the transition. The right panel of
Fig. 7 shows how the peak height of the specific heat, CV,max,
depends on the cube of the system size, L3. For a first-order
transition, one expects CV,max ∝ (a + bL3) in the limit of large
L [41]. The plot illustrates that for L = 4 (L3 = 64) and L = 5
(L3 = 125), CV,max is approaching this expected behavior.
This provides further evidence for a first-order transition in
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E

P
(E

)

0 27 64 125
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V
,
m
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L3

FIG. 7. Two plots showing Monte Carlo data for J = 1 and
D = 0 illustrating the first-order nature of the transition. The left-
hand panel is a histogram of the measured energies for L = 4 at
T/J � 0.127, close to the transition temperature. The double-peaked
structure is evidence for a coexistence region and hence an underlying
first-order transition. The right panel shows the peak height of the
specific heat, CV,max, versus the cube of the system size, L3. The
dashed line shows a straight line for the hypothetical CV,max ∝
a + bL3 in the thermodynamic limit.

−π   −2π/3  −π/3   0  π/3  2π/3   π  
φ ( r ad)

P
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)

FIG. 8. Monte Carlo data for J = 1 and D = 0. Histogram of
the local XY angles for all spins for L = 4 at a temperature T/J =
0.1 � Tc. The histogram shows peaks at angles nπ/3 illustrating that
the ψ2 states are preferably sampled below Tc/J ≈ 0.127.

this D = 0 〈111〉 pyrochlore XY antiferromagnet. Finally,
Fig. 8 shows a histogram of the local XY angle averaged
over all spins on all sublattices at T/J = 0.1 for system size
L = 4. The figure shows six sharp peaks concentrated at the
ψ2 angles nπ/3. We find, in addition, that the spin angles on all
sublattices are concentrated around one of these angles at any
given Monte Carlo time. This result therefore demonstrates
the selection of ψ2 states from the continuous manifold of
classical ground states and also that all six magnetic domains
are sampled in the course of the simulation—a possibility
facilitated by the use of a parallel tempering algorithm in our
simulations compared to those of Refs. [14–16].

V. PERTURBING THE XY PYROCHLORE
ANTIFERROMAGNET

A. Materials context

Recent years have seen a great deal of progress in the
understanding of the rare-earth pyrochlore magnets [18]. Early
successes came from studying the spin ices where geometrical
frustration leads to an exotic state of matter which can be
understood quantitatively on the basis of an Ising model with
long-range interactions. Most of the available materials exist
away from the Ising limit though. Here, progress has been
possible by recognizing that the largest couplings in these
magnets should, in general, have significant values of all
four independent nearest-neighbor interactions allowed by
symmetry [22–24,42,43]. For example, a set of anisotropic
exchange couplings found for Yb2Ti2O7 by fitting spin wave
data taken in a field-induced ordered state [42] has been
shown to produce excellent agreement with heat capacity and
field-dependent magnetization [44,45].

From this point of view, there is a danger that the
XY pyrochlore antiferromagnet, as only one point in this
high-dimensional space, might appear phenomenologically
irrelevant. In reality, it turns out to influence the physics

024425-7



MCCLARTY, STASIAK, AND GINGRAS PHYSICAL REVIEW B 89, 024425 (2014)

over a broad range of couplings. The material Er2Ti2O7

undergoes a phase transition at a temperature Tc ∼ 1.2 K
from a paramagnet to a long-range-ordered magnetic state
with the ψ2 structure. Although the couplings in this material
are highly anisotropic [46,47], it is not a coincidence that
the XY antiferromagnet shares its ordered structure with
Er2Ti2O7. In this paper, we have reviewed the ground states
of the XY antiferromagnet showing that there are four
families of solutions each with a continuous degeneracy. The
states selected by fluctuations lie at the intersections between
these different families. When perturbations are added to the
Hamiltonian, the branch labeled 1 in Sec. II remains degenerate
as shown for nearest-neighbor couplings in Ref. [23] (and
generalized to further neighbor couplings in Ref. [46]) but, in
general, the degeneracy of the remaining branches is lifted.
Even so, branch 1 remains the classical ground state for a
wide range of couplings and the spin states at intersection
points between branches, ψ2, have softer modes than other
spin configurations leading to order-by-disorder. This is the
case for Er2Ti2O7.

The softness of the modes at the ψ2 configurations can
potentially lead to an interesting scenario where the classical
ground state is not U (1) degenerate—the U (1) degenerate
space of states whose energy is being pushed above some
other states—but where thermal or quantum fluctuations
nevertheless select the ψ2 states over the ground states of
the model considered without fluctuations. Motivated by the
fact that many rare-earth pyrochlores possess large magnetic
moments, we consider the role of the long-range dipolar
interaction as a natural perturbation to the XY antiferromagnet.
Since branch 1 remains degenerate [46] even under this long-
range interaction, there is a possibility that order-by-disorder
operates for fairly large values of the magnetic moments com-
pared to the exchange couplings. This fluctuation stabilization
would be further enhanced were the interactions between the
spins to include anisotropic nearest-neighbor pseudo-dipolar
exchange [23,24] decreasing the energetic long-range dipolar
stabilization of the Palmer-Chalker states [25] [see Eq. (3)].
One may even ask whether such OBD may occur when the
classical degeneracy is broken by the long-range interaction at
zero temperature through anharmonic spin wave interactions
or at finite temperature again through nonlinear effects. In
this paper, we explore the latter phenomenon numerically to
see whether it operates near the critical temperature to the
paramagnetic phase.

B. Effect of competing nearest-neighbor
pseudo-dipolar interaction

In this subsection, we look at the effect of introducing
pseudo-dipolar interactions on the order-by-disorder in the
〈111〉 XY pyrochlore antiferromagnet. These couplings of
dipolar form acting between nearest-neighbor moments may
arise as a contribution to the superexchange in pyrochlore
magnets [24]. We find that order-by-disorder into ψ2 states
survives for sufficiently small pseudo-dipolar couplings and
estimate the maximum value of the dipolar coupling strength
D that permits ψ2 ordering.

A similar behavior is observed, albeit in a different context,
in a model that tunes between the Heisenberg pyrochlore

antiferromagnet and the fcc Heisenberg antiferromagnet. In
this model, thermal order-by-disorder, studied using Monte
Carlo simulations, prevails over the energetically driven
ordering identified within mean-field theory [48]. No transition
was reported in Ref. [48] from the entropically selected
ordered phase to the energetically ordered phase as the tem-
perature of the system decreases. Another related example is
the Heisenberg J1-J2 model on a pyrochlore lattice where
the nearest-neighbor interaction is antiferromagnetic and the
second-neighbor coupling ferromagnetic [49]. In this model,
there is an intermediate temperature collinear phase which is
selected by entropic fluctuations that gives way to a multi-q
structure at lower temperatures.

The dipolar interaction in the following is first taken to
act solely between nearest neighbors. If for no other reason,
such a model has the advantage of reducing the difficulty in
equilibrating the system and hence decreases the computer
simulation time. As stated above, effective spin-spin interac-
tions of this type can arise is real pyrochlore magnets. From a
more computational perspective, we also study this simplified
model because (i) in combination with antiferromagnetic
exchange, dipolar interactions between nearest neighbors
select the same ψ4 magnetic order as the long-range dipolar
interactions [25] and because (ii) we have found, through
Monte Carlo simulations of a model with long-range dipolar
interactions (see the following subsection V C), that the general
conclusions of this subsection do not depend sensitively on
retaining the full 1/r3 long-range nature of the magnetostatic
dipole-dipole interactions. All simulations were conducted
using a parallel tempering algorithm.

Figures 9 and 10 show the heat capacities and order
parameters qψ2 and qψ4 for different values ofD/J (see Sec. III
for a definition of qψ2 and qψ4 ). The first row of Fig. 9 shows
the results for D/J = 0.5 × 10−4 for L = 3,4, and 5. There
is a clear onset of the ψ2 order parameter upon lowering
the temperature and this feature becomes sharper when the
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FIG. 9. (Color online) Order parameter qψ2 and heat capacity for
L = 3,4,5, for D/J = 0.5 × 10−4 and D/J = 10−4 in upper and
lower panels, respectively.
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FIG. 10. (Color online) Order parameter qψ4 and heat capacity
for D/J = 2 × 10−4 (L = 3,4,5) and D/J = 3 × 10−4 (L = 3,4)
in upper and lower panels, respectively. The dashed line shows
unequilibrated data for L = 4 when the simulation is started from
a random initial configuration.

system size increases. Similar behavior is shown in the second
row in Fig. 9 for a larger value, D/J = 10−4. The ψ4 order
parameter was also measured for these two values of D/J

and found to be close to zero, within the present finite-size
effects, and displaying no perceptible features around the onset
temperature of qψ2 . This is, therefore, compelling evidence
for the thermal order-by-disorder of an ordered ψ2 state
at nonzero temperature that persist despite the presence of
pseudo-dipolar interactions that energetically select a broken
discrete symmetry ground state in such a way that the thermally
selected states are not the true minimum energy classical states.
Since the thermally selected states are not the true ground
states, one expects a further phase transition at sufficiently low
temperatures provided the system can be made to equilibrate.
We have found no evidence for such a transition however using
our parallel tempering algorithm.

In Fig. 10 all the simulations were started from the
ordered qψ4 state. Due to the strongly first order character
of the transition, it was not possible to equilibrate larger
system sizes when starting from random initial conditions.
For D/J = 3 × 10−4 we did not manage to equilibrate the
L = 5 system. The validity of the presented results were
confirmed by comparison of the simulation started from both
ordered and disordered initial configurations. In the case of
L = 3, it was confirmed that simulations started from both
ordered and disordered initial configurations give the same
results. For larger L, it was observed that the simulation
started from an ordered configuration essentially remains
in this configuration, while the simulation started from a
random initial condition slowly progresses toward the ordered
state. The figure shows qψ4 for D/J = 3 × 10−4, where
the unequilibrated L = 4 result for the simulation started
from a random initial configuration is plotted with a dashed
line.
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FIG. 11. (Color online) Order parameter qψ2 and heat capacity
(L = 3) for nearest-neighbor pseudo-dipolar interactions (solid red
symbols) and long-range dipolar interactions (open black symbols).
Squares mark the results for D/J = 0.5 × 10−4 and circles for
D/J = 10−4.

C. Effect of competing long-range dipolar interaction

In this subsection, we compare the data for the nearest-
neighbor pseudo-dipolar interactions with the data obtained
for long-range dipolar interaction treated with the Ewald
method [50]. Including a full long-range dipolar interaction
increases the scaling of the computational time from L3,
characterizing short-range models, to L6. This, in combination
with the very slow equilibration of the system, which was
already encountered in the case of the nearest-neighbor
pseudo-dipolar model, makes the simulation times for models
with long-range interactions prohibitively long for all system
sizes L > 3. To make further progress on this problem would
necessitate the development of a more adequate simulation
algorithm perhaps making better use of the aforementioned
spatially extended excitations.

Figure 11 shows the order parameters qψ2 and heat capaci-
ties for L = 3, for two values ofD/J ,D/J = 0.5 × 10−4, and
D/J = 10−4, in the regime where the system orders into the
ψ2 state at the critical temperature. The red solid symbols mark
the data obtained with full Ewald treatment of the long-range
dipolar interaction, while the black open symbols are the
results for the nearest-neighbor pseudo-dipolar interactions
repeated, for ease of comparison, from Fig. 9. There are
only quantitative differences between the two data sets. In
a similar fashion, Fig. 12 shows data for the regime where the
system orders into the ψ4 state. The data obtained with Ewald
method is marked with red solid symbols, while the data for
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FIG. 12. (Color online) Order parameter qψ4 and heat capacity
(L = 3) for nearest-neighbor pseudo-dipolar interactions (solid red
symbols) and long-range dipolar interactions (open black symbols).
Squares mark the results for D/J = 2 × 10−4 and circles for
D/J = 3 × 10−4.
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nearest-neighbor pseudo-dipolar interaction is indicated by
black open symbols. The values of D/J are D/J = 2,3 ×
10−4. For both long- and short-ranged dipolar interactions the
magnitude of the ψ4 order parameter increases with the relative
strength of the dipolar interaction. The transition temperature
in the case of the long-range dipolar interaction is higher than
for the nearest-neighbor pseudo-dipolar interaction.

VI. SUMMARY

We have discussed in Secs. II and IV, in some detail, the
classical ground states, along with the thermal and quantum
behavior of the pyrochlore 〈111〉 XY antiferromagnet with
exchange only.

We have shown that the classical ground states on a
single tetrahedron have four branches of ground states each
with one continuous degenerate set of states involving the
smooth rotation of all four spins simultaneously, confirming
the previous result [16]. From a calculation of the ground states
on a single tetrahedron, we have inferred the ground states
on the whole pyrochlore lattice which include line defects
implying that the number of ground states scales as L2, where
L is the edge length of the crystal.

Monte Carlo simulations of this model confirm that there
is thermal selection of a discrete set of spin states with
ordering wave vector q = 0, referred to as ψ2 states [19],
from the manifold of classical ground states. We have shown,
furthermore, that this selection occurs to harmonic order in
small angular fluctuations about the classical ground states.
In this model, the linear spin wave spectrum shows strong
similarities with the spectrum of eigenvalues of the Hessian.
Specifically, the spin wave zero modes and the Hessian zero
modes appear within the same planes in reciprocal space
for the ψ2 states. It follows that the quantum zero point
energy is minimized at the same ψ2 spin configurations that
are selected through a classical thermal order-by-disorder
mechanism, hence confirming the conjecture of Refs. [15,16].
Knowledge of the classical ground states provides insight,
from direct space rather than reciprocal space, into the nature
of the fluctuation-induced long-range order that occurs in this
model.

We have considered the effect of including (nearest-
neighbor) pseudo-dipolar interactions together with the an-
tiferromagnetic exchange in the classical model at finite
temperature. The (energetically selected) ground states of this
model are the ψ4 states [19] (also referred to as the Palmer-
Chalker state [25]), given in Sec. II, so the introduction of
dipolar interactions produces a competition between energetic
selection and thermal selection. We have found evidence for
the persistence of an order-by-disorder transition to a ψ2 state
even when D 	= 0. This finding implies that, in principle, a
second transition should occur at lower temperatures into the
ψ4 (Palmer-Chalker) long-range-ordered state since it is the
nondegenerate and stable classical ground state. However,
using Monte Carlo simulations, we have found no evidence
for such a transition, at the very least, because the difficulties
of equilibration within the ordered ψ2 phase prevent the
exploration of the space of configurations computationally.
As remarked on in the previous section, a similar situation
arises in the model of Refs. [48,49].

To conclude, we have shown that ψ2 long-range order
is present at low temperatures in the 〈111〉 XY pyrochlore
antiferromagnet induced both by thermal and quantum fluc-
tuations and we have gained insight from both direct and
reciprocal space into why the ψ2 states are selected. The
physics of this model controls a significant portion of the phase
diagram within the space of symmetry-allowed anisotropic
nearest-neighbor interactions [20,22–24,46]. We have also
studied a case where the classical ground state degeneracy
is broken down to a discrete set of states but where order-by-
disorder operates at finite temperature. We expect the order-
by-disorder mechanism to be somewhat robust to the presence
of symmetry-breaking perturbations so much so that, experi-
mentally, the typical case of thermal order-by-disorder may be
accompanied by a low-temperature metastability of the states
selected by thermal fluctuations with, perhaps, a failure of the
system to reach its true classical zero-temperature ground state.

This kind of physics is perhaps relevant to the puzzling
behavior observed in Er2Sn2O7, a material closely related to
Er2Ti2O7, which does not develop long-range order down to
100 mK, but instead exhibits a freezing below a temperature
of 200 mK that coexists with short-range Palmer-Chalker-like
correlations [51].

Note added in proof. A paper discussing the general topic
of finite-temperature and quantum order-by-disorder in XY
pyrochlore magnets has recently appeared [52]. Also, a recent
paper reporting inelastic neutron scattering measurements on
Er2Ti2O7 [53] finds evidence for a zone center spin-wave gap
of approximately 0.05 meV, as is necessary for a broken
discrete symmetry ψ2 long-range ordered state [21,46], as
opposed to a gapless Goldstone mode [15]. (See Refs. [54,55]
for previous reports on an upper bond on the value of this gap).
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APPENDIX A: CALCULATION OF THE GROUND STATES
OF THE XY ANTIFERROMAGNET

The zero-moment conditions on a single tetrahedron are

cos(φ1) + cos(φ2) = cos(φ3) + cos(φ4), (A1)

cos(φ′
1) + cos(φ′

4) = cos(φ′
2) + cos(φ′

3), (A2)

cos(φ′′
1 ) + cos(φ′′

3 ) = cos(φ′′
2 ) + cos(φ′′

4 ), (A3)

where φ′
a ≡ φa + 2π

3 and φ′′
a ≡ φa + 4π

3 . The angles φa

are angles in the local coordinate system on sublattice a

(a = 1,2,3,4). As discussed in Sec. II, and as previously
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reported in Ref. [17], the ground states of the 〈111〉 XY

pyrochlore antiferromagnet are characterized by the following
four sets of solutions (“branches”):

branch1: φ̄ ≡ φ̄1 = φ̄2 = φ̄3 = φ4,

branch2: φ̄ ≡ φ̄1 = φ̄2 = −φ̄3 = −φ̄4,
(A4)

branch3: φ̄ ≡ φ̄1 = φ̄3 ,
4π

3
− φ̄ = φ̄2 = φ̄4,

branch4: φ̄ ≡ φ̄1 = φ̄4 ,
2π

3
− φ̄ = φ̄2 = φ̄3.

In this appendix, we present a derivation of this result that
differs from the one in Ref. [17]. Defining σab ≡ (φa + φb)/2
and δab ≡ (φa − φb)/2, we first proceed to rewrite the zero-
moment conditions as

cos(σ12) cos(δ12) − cos(σ34) cos(δ34) = 0, (A5)

− sin(σ12) sin(δ12) +
√

3 cos(σ34) cos(δ34) = 0, (A6)
√

3 cos(σ12) sin(δ12) − sin(σ34) sin(δ34) = 0, (A7)

by using half-angle formulas and then combining the second
and third zero-moment conditions in Eq. (A3) to finally obtain
Eqs. (A6) and (A7).

Our strategy is to eliminate the sums of pairs, σμν , keeping
only the differences of pairs, δμν . Thus, from Eq. (A5), we get

sin2(σ12) = 1 −
(

cos(σ34) cos(δ34)

cos(δ12)

)2

.

Substitute into Eq. (A6) to get

[1 − sin2(δ12) − cos2(δ34) cos2(σ34)] sin2(δ12)

= 3 cos2(σ34) sin2(δ34)[1 − sin2(δ12)]. (A8)

Then, squaring Eqs. (A6) and (A7), and adding the result, we
obtain

sin2(δ12) = (
1
3 sin2(σ34) + 3 cos2(σ34)

)
sin2(δ34), (A9)

which we can otherwise write as

cos2(σ34) = 3

8

(
sin2(δ12)

sin2(δ34)
− 1

3

)
. (A10)

So now we can proceed with what we set out to do:
substitute Eq. (A10) into Eq. (A8) leaving us, after rearranging
and canceling off a cos2(δ12) term, with

sin2(δ12) sin2(δ34) = 1
8 [3 sin2(δ12) − sin2(δ34)]

× [3 sin2(δ34) + sin2(δ12)]. (A11)

It follows from this last equation that

3
8 [sin2(δ34) − sin2(δ12)] = 0.

Hence, the most general form for the set of φa angles is

(φ̄1,φ̄2,φ̄3,φ̄4) = (φ̄ + θ,φ̄,ψ ± θ,ψ).

Substituting this into our original zero moment formula,
Eq. (A1), which we write here again,

cos(φ̄1) + cos(φ̄2) = cos(φ̄3) + cos(φ̄4),

shows that one must have either

(φ̄1,φ̄2,φ̄3,φ̄4) = (φ + θ,φ,φ + θ,φ)

or

(φ̄1,φ̄2,φ̄3,φ̄4) = (φ + θ,φ,φ,φ + θ )

if θ is nonvanishing or

(φ̄1,φ̄2,φ̄3,φ̄4) = (φ,φ, ± φ, ± φ)

if θ = 0. Thus, the angles must occur in pairs. One can now
return to original zero-moment conditions, Eq. (A3), and, with
the knowledge that the angles must occur in pairs, obtain
the four branches of ground states in Eq. (A4). For example,
suppose that the pairs of angles occur in the configuration

(ψ,φ,φ,ψ);

then Eq. (A3) gives the branch(
ψ,

2π

3
− ψ,

2π

3
− ψ,ψ

)
,

which is the branch number 4 of Eq. (A4).

APPENDIX B: BRILLOUIN ZONE INTEGRATION

In the calculation of the free energy in Eq. (9), in particular
the last term of that equation, we take the Brillouin zone sum
over to an integral as applicable to the case of an infinite lattice.
In general, we expect ∑

k

→ NP

�BZ

∫
BZ

,

where the integral is taken over the Brillouin zone of volume
�BZ and NP is the number of primitive cells. We thus have

∑
k

→ Na3

4[4(2π )3]

∫
BZ

d3k.

The edge length of the cubic unit cell, a, has been set equal
to 1. The two factors of one-quarter come about because (i)
4NP = N where N is the number of spins and (ii) the Brillouin
zone volume is 4(2π/a)3.

APPENDIX C: EQUIPARTITION ARGUMENT

In this appendix, we revisit the Monte Carlo simulations
presented in Ref. [16]. In particular, we consider Fig. 6 in that
work showing the average energy in the ordered phase at low
temperatures as a function of the system size. The authors of
Ref. [16] found that

E

NkBT
= α − β

1

L
.

We find that the existence of chains of zero modes in the 〈111〉
XY pyrochlore antiferromagnet is sufficient to constrain the
coefficients α and β.
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Let us consider a cubic cell with edge length L with each
cubic unit cell of unit edge length. The number of spins is
N = 16L3. Consider a square face of a single cubic cell. There
are two chains beginning on the face that alternate between
sublattices a and b. The number of such chains passing through
the sample is Nchains = 2L2. There is one degree of freedom
per spin so the average energy would be (1/2)NkT were it
not for the fact that the spectrum of modes about the ψ2

states has planes of zero modes. We shall assume that the
zero modes (in the harmonic spectrum) are actually resolved
by a quartic contribution to the energy, when looking at the
higher order corrections to the Hamiltonian, giving a thermal
energy of kBT/4 per quartic mode. The zero modes correspond
to rotations along two classes of ab chains so the number of

such modes is 2Nchains. Thus, the average energy is

E = kBT

2
(N − 2Nchains) + kBT

4
(2Nchains)

= kBT

2
N − kBT

2
Nchains.

Then, because Nchains = 2L2 = 2(N/16)2/3, we obtain

E

NkBT
= 1

2
− 1

162/3
N−1/3 = 1

2
− 1

16

1

L
.

The coefficient in front of 1/L from Monte Carlo simula-
tion [16] is approximately 0.0636 which is in good agreement
with the calculated 1/16 = 0.06250 value above.
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